Druckansicht der Internetadresse:

Faculty of Mathematics, Physics & Computer Science

Chair for Databases and Information Systems – Prof. Dr.-Ing. Stefan Jablonski

Print page



Paper accepted at ENASE 2018


The paper "Deep Learning Process Prediction with Discrete and Continuous Data Features" has been accepted for presentation and publication at the 13th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE). Below you can find the abstract of the paper.

Deep Learning Process Prediction with Discrete and Continuous Data Features

Process prediction is a well known method to support participants in performing business processes. These methods use event logs of executed cases as a knowledge base to make predictions for running instances. A range of such techniques have been proposed for different tasks, e.g., for predicting the next activity or the remaining time of a running instance. Neural networks with Long Short-Term Memory architectures have turned out to be highly customizable and precise in predicting the next activity in a running case. Current research, however, focuses on the prediction of future activities using activity labels and resource information while further event log information, in particular discrete and continuous event data is neglected. In this paper, we show how prediction accuracy can significantly be improved by incorporating event data attributes. We regard this extension of conventional algorithms as a substantial contribution to the field of activity prediction. The new approach has been validated with a recent real-life event log.

Facebook Twitter Youtube-Kanal Instagram UBT-A Contact